Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Oxf Open Immunol ; 4(1): iqad002, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-20235201

RESUMO

Orthostatic intolerance and other autonomic dysfunction syndromes are emerging as distinct symptom clusters in Long Covid. Often accompanying these are common, multi-system constitutional features such as fatigue, malaise and skin rashes which can signify generalized immune dysregulation. At the same time, multiple autoantibodies are identified in both Covid-related autonomic disorders and non-Covid autonomic disorders, implying a possible underlying autoimmune pathology. The lack of specificity of these findings precludes direct interpretations of cause and association, but their prevalence with its supporting evidence is compelling.

2.
Clin Infect Dis ; 2022 May 26.
Artigo em Inglês | MEDLINE | ID: covidwho-2237572

RESUMO

BACKGROUND: We studied whether comorbid conditions impact strength and duration of immune responses after SARS-CoV-2 mRNA vaccination in a US-based, adult population. METHODS: Sera (pre-and-post-BNT162b2 vaccination) were tested serially up to 12 months after two doses of vaccine for SARS-CoV-2-anti-Spike neutralizing capacity by pseudotyping assay in 124 individuals; neutralizing titers were correlated to clinical variables with multivariate regression. Post-booster (third dose) effect was measured at 1 and 3 months in 72 and 88 subjects respectively. RESULTS: After completion of primary vaccine series, neutralizing antibody IC50 values were high at one month (14-fold increase from pre-vaccination), declined at six months (3.3-fold increase), and increased at one month post-booster (41.5-fold increase). Three months post-booster, IC50 decreased in COVID-naïve individuals (18-fold increase) and increased in prior COVID-19 + individuals (132-fold increase). Age >65 years (ß=-0.94, p = 0.001) and malignancy (ß=-0.88, p = 0.002) reduced strength of response at 1 month. Both neutralization strength and durability at 6 months, respectively, were negatively impacted by end-stage renal disease [(ß=-1.10, p = 0.004); (ß=-0.66, p = 0.014)], diabetes mellitus [(ß=-0.57, p = 0.032); (ß=-0.44, p = 0.028)], and systemic steroid use [(ß=-0.066, p = 0.032); (ß=-0.55, p = 0.037)]. Post-booster IC50 was robust against WA-1 and B.1.617.2. Post-booster neutralization increased with prior COVID-19 (ß = 2.9, p-value < 0.0001), and malignancy reduced neutralization response (ß=-0.68, p = 0.03), regardless of infection status. CONCLUSION: Multiple clinical factors impact the strength and duration of neutralization response post-primary series vaccination, but not the post-booster dose strength. Malignancy was associated with lower booster-dose response regardless of prior COVID infection, suggesting a need for clinically guided vaccine regimens.

4.
PLoS One ; 17(12): e0276644, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2162567

RESUMO

Human mobility datasets collected from personal mobile device locations are integral to understanding how states, counties, and cities have collectively adapted to pervasive social disruption stemming from the COVID-19 pandemic. However, while indigenous tribal communities in the United States have been disproportionately devastated by the pandemic, the relatively sparse populations and data available in these hard-hit tribal areas often exclude them from mobility studies. We explore the effects of sparse mobility data in untangling the often inter-correlated relationship between human mobility, distancing orders, and case growth throughout 2020 in tribal and rural areas of California. Our findings account for data sparsity imprecision to show: 1) Mobility through legal tribal boundaries was unusually low but still correlated highly with case growth; 2) Case growth correlated less strongly with mobility later in the the year in all areas; and 3) State-mandated distancing orders later in the year did not necessarily precede lower mobility medians, especially in tribal areas. It is our hope that with more timely feedback offered by mobile device datasets even in sparse areas, health policy makers can better plan health emergency responses that still keep the economy vibrant across all sectors.


Assuntos
COVID-19 , Pandemias , Humanos , Estados Unidos , COVID-19/epidemiologia , California
5.
BMC Infect Dis ; 22(1): 744, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: covidwho-2038670

RESUMO

BACKGROUND: The durability of immune responses to COVID-19 vaccines among older people living with HIV (PWH) is clinically important. METHODS: We aimed to assess vaccine-induced humoral immunity and durability in older PWH (≥ 55 years, n = 26) over 6 months (post-initial BNT162b2 series). A secondary and exploratory objective was to assess T-cell response and BNT162b2 booster reactogenicity, respectively. Our Visit 1 (3 weeks post-initial BNT162b2 dose) SARS-CoV-2 humoral immunity results are previously reported; these subjects were recruited for Visit 2 [2 weeks (+ 1 week window) post-second vaccination] and Visit 3 [6 months (± 2 week window) post-initial vaccination] in a single-center longitudinal observational study. Twelve participants had paired Visit 2/3 SARS-CoV-2 Anti-Spike IgG data. At Visit 3, SARS-CoV-2 Anti-Spike IgG testing occurred, and 5 subjects underwent T-cell immune response evaluation. Thereafter, subjects were offered BNT162b2 booster (concurrent day outside our study) per US FDA/CDC guidance; reactogenicity was assessed. The primary study outcome was presence of detectable Visit 3 SARS-CoV-2 Anti-Spike-1-RBD IgG levels. Secondary and exploratory outcomes were T-cell immune response and BNT162b2 booster reactogenicity, respectively. Wilcoxon signed-rank tests analyzed median SARS-CoV-2 Anti-Spike IgG 6-month trends. RESULTS: At Visit 3, 26 subjects underwent primary analysis with demographics noted: Median age 61 years; male n = 16 (62%), female n = 10 (38%); Black n = 13 (50%), White n = 13 (50%). Most subjects (n = 20, 77%) had suppressed HIV viremia on antiretroviral therapy, majority (n = 24, 92%) with CD4 > 200 cells/µL. At Visit 3, 26/26 (100%) had detectable Anti-Spike-1-RBD (≥ 0.8 U/mL). Among 12 subjects presenting to Visit 2/3, median SARS-CoV-2 Anti-Spike 1-RBD was 2087 U/mL at Visit 2, falling to 581.5 U/mL at Visit 3 (p = 0.0923), with a median 3.305-fold decrease over 6 months. Among subjects (n = 5) with 6-month T-cell responses measured, all had detectable cytokine-secreting anti-spike CD4 responses; 3 had detectable CD4 + Activation induced marker (AIM) + cells. Two had detectable cytokine-secreting CD8 responses, but all had positive CD8 + AIM + cells. CONCLUSIONS: Among older PWH, SARS-CoV-2 Anti-Spike IgG and virus-specific T-cell responses are present 6 months post-primary BNT162b2 vaccination, and although waning, suggest retention of some degree of long-term protective immunity.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Citocinas , Feminino , Humanos , Imunoglobulina G , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
6.
Cell Rep Methods ; 2(7): 100252, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1894918

RESUMO

Efficient quantitative assays for measurement of viral replication and infectivity are indispensable for future endeavors to develop prophylactic or therapeutic antiviral drugs or vaccines against SARS-CoV-2. We developed a SARS-CoV-2 cell-cell transmission assay that provides a rapid and quantitative readout to assess SARS-CoV-2 spike hACE2 interaction in the absence of pseudotyped particles or live virus. We established two well-behaved stable cell lines, which demonstrated a remarkable correlation with standard cell-free viral pseudotyping for inhibition by convalescent sera, small-molecule drugs, and murine anti-spike monoclonal antibodies. The assay is rapid, reliable, and highly reproducible, without a requirement for any specialized research reagents or laboratory equipment and should be easy to adapt for use in most investigative and clinical settings. It can be effectively used or modified for high-throughput screening for compounds and biologics that interfere with virus-cell binding and entry to complement other neutralization assays currently in use.

7.
Nat Commun ; 13(1): 1638, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1764180

RESUMO

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identify two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generate a bispecific antibody. Lead antibodies show strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solve several cryo-EM structures at ~3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and reveal distinct epitopes, binding patterns, and conformations. The lead clones also show potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generate and characterize a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
8.
mBio ; 13(2): e0370521, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1714363

RESUMO

Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication. Two independent cell-to-cell membrane fusion assays showed that the antiviral effect of cobicistat is exerted through inhibition of spike protein-mediated membrane fusion. In line with this, incubation with low-micromolar concentrations of cobicistat decreased viral replication in three different cell lines including cells of lung and gut origin. When cobicistat was used in combination with remdesivir, a synergistic effect on the inhibition of viral replication was observed in cell lines and in a primary human colon organoid. This was consistent with the effects of cobicistat on two of its known targets, CYP3A4 and P-gp, the silencing of which boosted the in vitro antiviral activity of remdesivir in a cobicistat-like manner. When administered in vivo to Syrian hamsters at a high dose, cobicistat decreased viral load and mitigated clinical progression. These data highlight cobicistat as a therapeutic candidate for treating SARS-CoV-2 infection and as a potential building block of combination therapies for COVID-19. IMPORTANCE The lack of effective antiviral treatments against SARS-CoV-2 is a significant limitation in the fight against the COVID-19 pandemic. Single-drug regimens have so far yielded limited results, indicating that combinations of antivirals might be required, as previously seen for other RNA viruses. Our work introduces the drug booster cobicistat, which is approved by the FDA and typically used to potentiate the effect of anti-HIV protease inhibitors, as a candidate inhibitor of SARS-CoV-2 replication. Beyond its direct activity as an antiviral, we show that cobicistat can enhance the effect of remdesivir, which was one of the first drugs proposed for treatment of SARS-CoV-2. Overall, the dual action of cobicistat as a direct antiviral and a drug booster can provide a new approach to design combination therapies and rescue the activity of compounds that are only partially effective in monotherapy.


Assuntos
Tratamento Farmacológico da COVID-19 , Hepatite C Crônica , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Cobicistat , Cricetinae , Progressão da Doença , Humanos , Mesocricetus , Pandemias , SARS-CoV-2 , Carga Viral
9.
PLoS Pathog ; 17(6): e1009683, 2021 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1282318

RESUMO

COVID-19 is a global crisis of unimagined dimensions. Currently, Remedesivir is only fully licensed FDA therapeutic. A major target of the vaccine effort is the SARS-CoV-2 spike-hACE2 interaction, and assessment of efficacy relies on time consuming neutralization assay. Here, we developed a cell fusion assay based upon spike-hACE2 interaction. The system was tested by transient co-transfection of 293T cells, which demonstrated good correlation with standard spike pseudotyping for inhibition by sera and biologics. Then established stable cell lines were very well behaved and gave even better correlation with pseudotyping results, after a short, overnight co-incubation. Results with the stable cell fusion assay also correlated well with those of a live virus assay. In summary we have established a rapid, reliable, and reproducible cell fusion assay that will serve to complement the other neutralization assays currently in use, is easy to implement in most laboratories, and may serve as the basis for high throughput screens to identify inhibitors of SARS-CoV-2 virus-cell binding and entry.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Bioensaio/métodos , COVID-19/virologia , Receptores de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/genética , COVID-19/sangue , Fusão Celular , Células HEK293 , Humanos , Receptores de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/genética , Transfecção , Ligação Viral
10.
Clin Med (Lond) ; 21(1): e63-e67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: covidwho-948194

RESUMO

The SARS-CoV-2 (COVID-19) pandemic has caused unprecedented morbidity, mortality and global disruption. Following the initial surge of infections, focus shifted to managing the longer-term sequelae of illness in survivors. 'Post-acute COVID' (known colloquially as 'long COVID') is emerging as a prevalent syndrome. It encompasses a plethora of debilitating symptoms (including breathlessness, chest pain, palpitations and orthostatic intolerance) which can last for weeks or more following mild illness. We describe a series of individuals with symptoms of 'long COVID', and we posit that this condition may be related to a virus- or immune-mediated disruption of the autonomic nervous system resulting in orthostatic intolerance syndromes. We suggest that all physicians should be equipped to recognise such cases, appreciate the symptom burden and provide supportive management. We present our rationale for an underlying impaired autonomic physiology post-COVID-19 and suggest means of management.


Assuntos
COVID-19/epidemiologia , Gerenciamento Clínico , Pandemias , SARS-CoV-2 , COVID-19/terapia , Saúde Global , Humanos , Morbidade/tendências , Taxa de Sobrevida/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA